H2 TEXT FOR SEARCH ENGINES

Supporting publications & references

Boston Heart HDL Map™ Test

Metabolism, Framingham, and Intervention Studies

Diagnosis of Inborn Errors of HDL Metabolism

Effects of Medications

Boston Heart Cholesterol Balance™ Test

Statin Induced Myopathy (SLCO1B1) Genotype

Boston Heart Lifestyle Program

Caloric Reduction

Avoidance of Excess Dietary Saturated Fat

Restriction of Excess Dietary Carbohydrate

Role of Exercise

Benefits of Whole Grains

Boston Heart HDL Map™ Test

Metabolism, Framingham, and intervention studies

Asztalos BF, Swarbrick MM, Schaefer EJ, et al. Effects of weight loss, induced by gastric bypass surgery, on HDL remodeling in obese women. J Lipid Res. 2010;51(8):2405–2412.

Asztalos BF. High-density lipoprotein particles. In: Schaefer EJ, ed. High-density Lipoproteins, Dyslipidemia, and Coronary Heart Disease. New York, NY: Springer; 2010:25–32.

Lamon-Fava S, Herrington DM, Reboussin DM, Sherman M, Horvath K, Schaefer EJ, Asztalos BF. Changes in remnant and high-density lipoproteins associated with hormone therapy and progression of coronary artery disease in postmenopausal women. Atherosclerosis. 2009;205(1):325–330.

Zhao XQ, Krasuski RA, Baer J, et al. Effects of combination lipid therapy on coronary stenosis progression and clinical cardiovascular events in coronary disease patients with metabolic syndrome: A combined analysis of the Familial Atherosclerosis Treatment study (FATS), the HDL-Atherosclerosis Treatment Study (HATS), and the Armed Forces Regression Study (AFREGS). Am J Cardiol. 2009;104(11):1457–1464.

Asztalos BF, Collins D, Horvath KV, Bloomfield HE, Robins SJ, Schaefer EJ. Relation of gemfibrozil treatment and high-density lipoprotein (HDL) subpopulation profile with cardiovascular events in the Veterans Affairs HDL Intervention Trial. Metabolism. 2008;57(1):77–83.

Lamon-Fava S, Herrington DM, Reboussin DM, et al. Plasma levels of HDL subpopulations and remnant lipoproteins predict the extent of angiographically-defined coronary artery disease in post-menopausal women. Arterioscler Thromb Vasc Biol. 2008;28:575–579.

Asztalos BF, Schaefer EJ, Horvath KV, et al. Role of LCAT in HDL remodeling: investigation of LCAT deficiency states. J Lipid Res. 2007;48(3):592–599.

Asztalos BF, Collins D, Cupples LA, et al. Value of high-density lipoprotein (HDL) subpopulations in predicting recurrent cardiovascular events in the Veterans Affairs HDL Intervention Trial. Arterioscler Thromb Vasc Biol. 2005;25:2185–2191.

Asztalos BF, De La Llera-Moya M, Dallal GE, Horvath KV, Schaefer EJ, Rothblat GH. Differential effects of HDL subpopulations on cellular ABCA1 and SRB1-mediated cholesterol efflux. J Lipid Res. 2005;46(10):2246–2253.

Asztalos BF, Cupples LA, Demissie S, et al. High-density lipoprotein subpopulation profile and coronary heart disease prevalence in male participants of the Framingham Offspring Study. Arterioscler Thromb Vasc Biol. 2004;24:2181–2187.

Asztalos BF, Batista M, Horvath KV, et al. Change in α-1 HDL concentration predicts progression in coronary artery stenosis. Arterioscler Thromb Vasc Biol. 2003;23:847–852.

Rubins HB, Robins SJ, Collins D, et al; for VA-HIT Study Group. Diabetes, plasma insulin, and cardiovascular disease: subgroup analysis from the Department of Veterans Affairs high-density lipoprotein intervention trial (VA-HIT). Arch Intern Med. 2002;162:2597–2604.

Asztalos BF, Roheim PS, Milani RL, et al. Distribution of ApoA-I-containing HDL subpopulations in patients with coronary heart disease. Arteriosclerosis, Thrombosis and Vascular Biology. 2000;20(12):2670-2676.

Schaefer EJ, Lamon-Fava S, Ordovas JM, et al. Factors associated with low and elevated plasma high-density lipoprotein cholesterol and apolipoprotein A-I levels in the Framingham Offspring Study. J. Lipid Res. 1994;35:871–882.

Asztalos, BF, Sloop, CH, Wong,L, Roheim, PS. Two-dimensional electrophoresis of plasma lipoproteins: recognition of new apo A-I-containing subpopulations. Biochimica et Biophysica Acta. 1993;1169(3):291-300.

Schaefer EJ, Anderson DW, Brewer HB Jr, Levy RI, Danner RN, Blackwelder WC. Plasma-triglycerides in regulation of HDL-cholesterol levels. Lancet. 1978;312(8086):391–393.

Diagnosis of Inborn Errors of HDL Metabolism

Asztalos BF, Brunzell J. The kinetics and remodeling of HDL particles: lessons from inborn errors of lipid metabolism. In: Schaefer EJ, ed. High-density Lipoproteins, Dyslipidemia, and Coronary Heart Disease. New York, NY: Springer; 2010;33–44.

Brown WV, Brewer HB, Rader DJ, Schaefer EJ. HDL as a treatment target. J Clin Lipidology. 2010;4:5–16.

Santos RD, Schaefer EJ, Asztalos BF, et al. Characterization of high-density lipoprotein particles in familial apolipoprotein A-I deficiency with premature coronary atherosclerosis, corneal arcus and opacification, and tubo-eruptive and planar xanthomas. J Lipid Res. 2008;49(2):349–357.

Santos RD, Asztalos BF, Martinez L, Miname M, Polisecki E, Schaefer EJ. Clinical presentation, laboratory values, and coronary heart disease risk in marked high-density lipoprotein-deficiency states. J Clin Lipidology. 2008;2(4):237–247.

Asztalos BF, Schaefer EJ, Horvath KV, et al. Role of LCAT in HDL remodeling: investigation of LCAT deficiency states. J Lipid Res. 2007;48:592–599.

Asztalos BF, Horvath KV, Kajinami K, et al. Apolipoprotein composition of HDL in cholesteryl ester transfer protein deficiency. J Lipid Res. 2004;45:448–455.

Asztalos BF, Brousseau ME, McNamara JR, Horvath KV, Roheim PS, Schaefer EJ. Subpopulations of high-density lipoproteins in homozygous and heterozygous Tangier disease. Atherosclerosis. 2001;156:217–225.

Genest JJ, Martin-Munley SS, McNamara JR, et al. Familial lipoprotein disorders in patients with premature coronary artery disease. Circulation. 1992;85:2025–2033.

Effects of Medications

Asztalos, BF. High-density lipoprotein particles, coronary heart disease, and niacin. J Clin Lipidol. 2010;4(5):405–410.

Asztalos BF, Collins D, Horvath KV, Bloomfield HE, Robins SJ, Schaefer EJ. Relation of gemfibrozil treatment and high-density lipoprotein (HDL) subpopulation profile with cardiovascular events in the Veterans Affairs HDL Intervention Trial. Metabolism. 2008;57(1):77-83.

Lamon-Fava S, Diffenderfer MR, Barrett HR, et al. Extended-release niacin alters the metabolism of apolipoprotein (apo) A-I and apoB-containing lipoproteins. Arterioscler Thromb Vasc Biol. 2008;28:1672–1678.

Asztalos BF, LeMaulf F, Dallal GE, et al. Comparison of the effects of high doses of rosuvastatin versus atorvastatin on the subpopulations of high-density lipoproteins. Am J Cardiol. 2007;99:681–685.

Lamon-Fava S, Diffenderfer MR, Barrett HR, et al. Effects of different doses of atorvastatin on human apolipoprotein B-100, B-48, and A-I metabolism. J of Lipid Res. 2007;48:1746-1753.

Schaefer, EJ, Asztalos, BF. The effects of statins on high-density lipoproteins. Curr Atheroscler Rep. 2006;8(1):41–49.

Watts GF, Barrett HR, Ji J, et al. Differential regulation of lipoprotein kinetics by atorvastatin and fenofibrate in subjects with the metabolic syndrome. Diabetes. 2003; 52:803-811.

Asztalos BF, Horvath KV, McNamara JR, Roheim PS, Rubinstein JJ, Schaefer EJ. Effects of atorvastatin on the HDL subpopulation profile of coronary heart disease patients. J Lipid Res. 2002;43:1701-1707.

Asztalos BF, Horvath KV, McNamara JR, Roheim PS, Rubinstein JJ, Schaefer EJ. Comparing the effects of five different statins on the HDL subpopulation profiles of coronary heart disease patients. Atherosclerosis. 2002;164:361-369.

Robins SJ, Collins D, Wittes JT, et al; for VA-HIT Study Group. Relation of gemfibrozil treatment and lipid levels with major coronary events. VA-HIT: A randomized controlled trial. JAMA. 2001;285:1585–1591.

Boston Heart Cholesterol Balance™ Test

Matthan NR, Resteghini N, Robertson M, et al. Cholesterol absorption and synthesis markers in individuals with and without a CHD event during pravastatin therapy: insights from the PROSPER Trial. J Lipid Res. 2010;51:202-209.

Polisecki E, Peter I, Simon JS, et al; for Prospective Study of Pravastatin in the Elderly at Risk (PROSPER) Investigators. Genetic variation at the NPC1L1 gene locus, plasma lipoproteins, and heart disease risk in the elderly. J Lipid Res. 2010;51:1201–1207.

Schaefer EJ. Introduction to high-density lipoprotein, dyslipidemia, and coronary heart disease. In: Schaefer EJ, ed. High-density Lipoproteins, Dyslipidemia, and Coronary Heart Disease. New York, NY: Springer; 2010;1–14.

Tsubakio-Yamamoto K, Nishida M, Nakagawa-Toyama Y, et al. Current therapy for patients with sitosterolemia – effects of ezetimibe on plant sterol metabolism. J Atheroscler Thromb. 2010;17:891–900.

Van Himbergen TM, Otokozawa S, Matthan NR, et al. Familial combined hyperlipidemia is associated with alterations in the cholesterol synthesis pathway. Arterioscler Thromb Vasc Biol. 2010;30:113–120.

Matthan NR, Pencina M, LaRocque JM, et al. Alterations in cholesterol absorption /synthesis markers characterize Framingham Offspring Study participants with CHD. J Lipid Res. 2009;50:1927–1935.

Voora D, Shah SH, Spasojevic I, et al. The SLCO1B1*5 genetic variant is associated with statin-induced side effects. J Am Coll Cardiol. 2009;54:1609–1616.

Assmann G, Cullen P, Erbey J, Ramey DR, Kanneneberg F, Schulte H. Plasma sitosterol elevations are associated with an increased incidence of coronary events in men: Results of a nested case-control analysis of the Prospective Cardiovascular Münster (PROCAM) study. Nutr Metab Cardiovasc Dis. 2006;16(1):13–21.

Patel MD, Thompson PD. Phytosterols and vascular disease. Atherosclerosis. 2006;186:12–19.

Kajinami K, Brousseau ME, Nartsupha C, Ordovas JM, Schaefer EJ. ATP binding cassette transporter G5 and G8 genotypes and plasma lipoprotein levels before and after treatment with atorvastatin. J Lipid Res. 2004;45:653–656.

Miettinen TA, Gylling H. Cholesterol synthesis and absorption in coronary patients with lipid triad and isolated high LDL cholesterol in a 4S subgroup. Atherosclerosis. 2003;168(2):343–349.

Matthan NR, Giovanni A, Schaefer EJ, Brown BG, Lichtenstein AH. Impact of simvastatin, niacin, and/or antioxidants on cholesterol metabolism in CAD patients with low HDL. J Lipid Res. 2003;44:800-806.

Berge, KE, von Bergmann, K, Lutjohann, D, et al. Heritability of plasma non cholesterol sterols and relationship to DNA sequence polymorphism in ABCG5 and ABCG8. J Lipid Res. 2002;43:486–494.

Lamon-Fava S, Schaefer EJ, Garuti R, Salen G, Calandra S. Two novel mutations in the sterol 27- hydroxylase gene causing cerebrotendinous xanthomatosis. Clin Genetics. 2002;61(3):185–191.

Sudhop T, Lütjohann D., Kodal A, et al. Inhibition of intestinal cholesterol absorption by ezetimibe in humans. Circulation. 2002;106:1943–1948.

Miettinen, TA., Gylling, H, Strandberg, T, Sarna, S; for the Finnish 4S Investigators. Baseline serum cholestanol as predictor of recurrent coronary events in subgroups of Scandinavian simvastatin survival study. BMJ. 1998;316:1127–1130.

Genest JJ, Martin-Munley SS, McNamara JR, et al. Familial lipoprotein disorders in patients with premature coronary artery disease. Circulation. 1992;85:2025–2033.

Statin Induced Myopathy (SLCO1B1) Genotype

Akao H, Polisecki E, Kajinami K, et al. Genetic variation at the SLCO1B1 gene locus and low density lipoprotein cholesterol lowering response to pravastatin in the elderly. Atherosclerosis. 2012;220:413–417.

Corsini A, Ceska R. Drug-drug interactions with statins: will pitavastatin overcome the statins’ Achilles’ heel? Curr Med Res Opin. 2011;27(8):1551–1562.

Kawai Y, Sato-Ishida R, Motoyama A, Kajinami K. Place of pitavastatin in the statin armamentarium: promising evidence for a role in diabetes mellitus. Drug Res Dev Ther. 2011;5:283–297.

Mammen AL. Autoimmune myopathies: autoantibodies, phenotypes and pathogenesis. Nat Rev Neurol. 2011;7:343–354.

Niemi M, Pasanen MK, Neuvonen PJ. Organic anion transporting polypeptide 1B1: a genetically polymorphic transporter of major importance for hepatic drug uptake. Pharmacol Rev. 2011;63:157–181.

Ghatak A, Faheem O, Thompson PD. The genetics of statin-induced myopathy. Atherosclerosis. 2010;210:337–343.

Voora D, Shah SH, Spasojevic I, et al. The SLCO1B1*5 genetic variant is associated with statin-induced side effects. J Am Coll Cardiol. 2009;54:1609–1616.

Phillips PS, Haas RH. Statin myopathy as a metabolic muscle disease. Expert Rev Cardiovasc Ther. 2008;6(7):971–978.

The SEARCH Collaborative Group. SLCO1B1 variants and statin-induced myopathy – a genomewide study. N Engl J Med. 2008;359:789–799.

Boston Heart Lifestyle Program

Angermayr L, Melchart D, Linde K., Multifactorial lifestyle interventions in the primary and secondary prevention of cardiovascular disease and type 2 diabetes mellitus--a systematic review of randomized controlled trials. Ann Behav Med. 2010;40(1):49–64.

Caloric Reduction

Larsen TM, Dalskov SM, van Baak M, et al; for the Diet, Obesity, and Genes (Diogenes) Project. Diets with high or low protein content and glycemic index for weight-loss maintenance. N Eng J Med. 2010;363(22):2102–2113.

Sacks FM, Bray GA, Carey VJ, et al. Comparison of weight-loss diets with different compositions of fat, protein, and carbohydrates. N Engl J Med. 2009;360(9):859–873.

Avoidance of Excess Dietary Saturated Fat

Jakobsen MU, Dethlefsen C, Joensen AM, et al. Intake of carbohydrates compared with intake of saturated fatty acids and risk of myocardial infarction: importance of the glycemic index. Am J Clin Nutr. 2010;91(6):1764-1768.

Siri-Tarino PW, Sun Q, Hu FB, Krauss RM. Saturated fatty acids and risk of coronary heart disease: modulation by replacement nutrients. Curr Atheroscler Rep. 2010;12(6):384–390.

Berglund L, Oliver EH, Fontanez N, et al; for the DELTA Investigators. HDL-subpopulation patterns in response to reductions in dietary total and saturated fat intakes in healthy subjects. Am J Clin Nutr. 1999;70(6):992–1000.

Restriction of Excess Dietary Carbohydrate

Shai I, Schwarzfuchs D, Henkin Y, et al; for the Dietary Intervention Randomized Controlled Trial (DIRECT) Group. Weight loss with a low-carbohydrate, Mediterranean, or low-fat diet. N Engl J Med. 2008;359:229–241. Erratum in: N Engl J Med. 2009;361:2681.

Layman DK, Clifton P, Gannon MC, Krauss RM, Nuttall RQ. Protein in optimal health: heart disease and type 2 diabetes. Am J Clin Nutr. 2008;87(5):1571S-1575S.

Dansinger ML, Schaefer EJ. Low-carbohydrate or low-fat diets for the metabolic syndrome? Curr Diab Rep. 2006;6(1):55-63.

Wood RJ, Volek JS, Liu Y, Shachter NS, Contois JH, Fernandez ML. Carbohydrate Restriction Alters Lipoprotein Metabolism by Modifying VLDL, LDL, and HDL Subfraction Distribution and Size in Overweight Men. J Nutr. 2006;136(2):384–389.

Dansinger ML, Gleason JA, Griffith JL, Selker HP, Schaefer EJ. Comparison of the Atkins, Ornish, Weight Watchers, and Zone diets for weight loss and heart disease risk reduction: a randomized trial. JAMA. 2005;293(1):43–53.

Role of Exercise

Steffen-Batey L, Nichaman MZ, Goff DC Jr, et al; for The Corpus Christi Heart Project. Change in level of physical activity and risk of all-cause mortality or reinfarction. Circulation. 2000;102:2204–2209.

Benefits of Whole Grains

Jensen MK, Koh-Banerjee P, Hu FB, et al. Intakes of whole grains, bran, and germ and the risk of coronary heart disease in men. Am J Clin Nutr. 2004;80(6):1492–1499.

Jonnalagadda SS, Harnack L, Liu RH, et al. Putting the Whole Grain Puzzle Together: Health Benefits Associated with Whole Grains—Summary of American Society for Nutrition 2010 Satellite Symposium. J Nutr. 2011;141(5):1011S–1022S.

McKeown NM, Meigs JB, Liu S, Wilson PWF, Jacques PF. Whole-grain intake is favorably associated with metabolic risk factors for type 2 diabetes and cardiovascular disease in the Framingham Offspring Study. Am J Clin Nutr. 2002;76(2):390–398.

Kushi LH, Meyer KA, Jacobs DR Jr. Cereals, legumes, and chronic disease risk reduction: evidence from epidemiologic studies. Am J Clin Nutr. 1999;70(3)(suppl):451S–458S.

Back to Top